A *hp*-discontinuous Galerkin method for the time-dependent Maxwell's equation: a priori error estimate

C. Daveau · A. Zaghdani

Received: 4 June 2008 / Revised: 25 August 2008 © Korean Society for Computational and Applied Mathematics 2008

Abstract A discontinuous Galerkin method for the numerical approximation for the time-dependent Maxwell's equations in "stable medium" with supraconductive boundary, is introduced and analysed. its hp-analysis is carried out and error estimates that are optimal in the meshsize h and slightly suboptimal in the approximation degree p are obtained.

Keywords Discontinuous Galerkin method · Wave equation · A priori error estimate

Mathematics Subject Classification (2000) 65N30

1 Introduction

Electromagnetism is one application of the discontinuous Galerkin method, among many other areas. In [1], the discontinuous Galerkin method with solutions that are exactly divergence-free inside each element, is developped for numerically solving the Maxwell equations. In [2], M. Grote, A. Schneebeli and D. Schötzau propose and analyse the symmetric interior penalty discontinuous Galerkin method for the spatial discretization of Maxwell's equations in second order form.

Here, we consider a nonsymmetric interior penalty discontinuous Galerkin method to approximate in space an initial boundary value problem derived from Maxwell's equations in vacuum with perfect electric conductor boundary

$$\frac{\partial^2 u}{\partial t^2} + c^2 \nabla \times (\nabla \times u) = f, \qquad \nabla \cdot u = 0 \quad \text{in } \Omega \times I; \tag{1.1}$$

C. Daveau (🖂) · A. Zaghdani

CNRS, UMR 8088, Département de Mathématiques, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France e-mail: christian.daveau@math.u-cergy.fr

$$n \times u(x, t) = 0 \quad \text{on } \partial\Omega \times I,$$

$$u(x, 0) = u_0(x), \qquad \frac{\partial u}{\partial t}(x, 0) = u_1(x) \quad \text{on } \Omega.$$
(1.2)

Here Ω is a convex polyhedron included in \mathbb{R}^3 , $I = [0, t^*] \subset \mathbb{R}$, u_0 and u_1 are in $H_0(\nabla \times, \Omega) \cap H(\nabla \cdot 0, \Omega)$ and f is defined on $\Omega \times I$. Physically, u is the electric field, and f is related to a current density. Moreover $\mu_0 \varepsilon_0 c^2 = 1$ where $\mu_0 \approx 4\pi 10^{-7}$ H·m⁻¹ and $\varepsilon_0 \approx (36\pi 10^9)^{-1}$ F·m⁻¹ are respectively the magnetic permeability and the electric permittivity in vacuum. If we assume that the domain Ω is "stable medium" with boundary and if u is the exact solution of (1.1) and (1.2) then u and $\nabla \times u$ belong to $H^1(\Omega)^3$. For the notations, if I is an interval, X is a function space and ϕ is a function on $\Omega \times I$ then $\|\phi\|_{L^p(I,X)}$ denotes the norm in $L^p(I)$ of the function $t \to \|\phi(\cdot, t)\|_X$. $L^p(X)$ is short for $L^p(I, X)$.

Let Π_h be a partition of Ω into tetrahedra and consider the same spaces and notations as in [4].

Faces We define and characterise the faces of the triangulation Π_h . An interior face of Π_h is defined as the (non-empty) two-dimensional interior of $\partial K_1 \cap \partial K_2$, where K_1 and K_2 are two adjacents elements of Π_h . A boundary face of Π_h is defined as the (non-empty) two-dimensional interior of $\partial K \cap \partial \Omega$, where K is a boundary element of Π_h . We denote by F_h^I the union of all interior faces of Π_h , by F_h^D the union of all boundary faces of Π_h . Furthermore we identify F_h^D to $\partial \Omega$ since Ω is a polyhedron.

Traces Let $H^{s}(\Pi_{h}) = \{v : v_{|K} \in H^{s}(K) \; \forall K \in \Pi_{h}\}$ for $s > \frac{1}{2}$ endowed with the norm $\|v\|_{s,\Pi_{h}}^{2} = \sum_{K \in \Pi_{h}} \|v\|_{s,K}^{2}$. Then the elementwise traces of functions in $H^{s}(\Pi_{h})$ belongs to $\operatorname{TR}(F_{h}) = \Pi_{K \in \Pi_{h}} L^{2}(\partial K)$; they are double-valued on F_{h}^{I} and single-valued on F_{h}^{D} . The space $L^{2}(F_{h})$ can be identified with the functions in $\operatorname{TR}(F_{h})$ for which the two traces values coincide.

Traces operators Let us introduce the following traces operators for piecewise smooth functions. First, let $w \in \text{TR}(F_h)^3$ and $e \subset F_h$. If *e* is an interior face in F_h^I , we denote by K_1 and K_2 the elements sharing *e*, by n_i the normal unit vector pointing exterior to K_i and we set $\omega_i = \omega_{|\partial K_i|}$, i = 1, 2. We define the *average*, and the *tangential* and *normal jumps* of *w* at $x \in e$ as

$$\{\omega\} = \frac{\omega_1 + \omega_2}{2}, \quad [\omega]_T = n_1 \times \omega_1 + n_2 \times \omega_2 \quad \text{and} \quad [\omega]_N = n_1 \cdot \omega_1 + n_2 \cdot \omega_2.$$

If $e \subset F_h^D$, we set for $x \in e$

$$\{\omega\} = \omega, \quad [\omega]_T = n \times \omega \text{ and } [\omega]_N = n \cdot \omega.$$

If $w \in H(\nabla \times, \Omega)$, then, for all $e \subset F_h^I$ the jump condition $[w]_T = 0$ holds true in $L^2(e)^3$ and if $w \in H(\nabla, \Omega)$, then, for all $e \subset F_h^I$ the jump condition $[w]_N = 0$ holds true in $L^2(e)$.

For $e \subset F_h$, we denote by $\langle \cdot, \cdot \rangle_e$ the scalar product in $L^2(e)^3$ or $L^2(e)$, furthermore if F_h^D is identified to $\partial \Omega$, we identify $\sum_{e \subset F_h^D} \langle \cdot, \cdot \rangle_e$ to $\langle \cdot, \cdot \rangle$, the scalar product in $L^2(\partial \Omega)^3$ or $L^2(\partial \Omega)$.

Finite element spaces In order to define the average of $\nabla \times u$, we set for $s > \frac{1}{2}$, $H^s(\nabla \times, \Pi_h) := \{v : v_{|K} \in H^s(K)^3 \text{ and } \nabla \times (v_{|K}) \in H^s(K)^3, \forall K \in \Pi_h\}$. Let $p = (p_K)_{K \in \Pi_h}$ be a degree vector that assigns to each element $K \in \Pi_h$ a polynomial approximation order $p_K \ge 1$. The generic *hp*-finite element space of piecewise polynomials is given by

$$S^{p}(\Pi_{h}) = \{ u \in L^{2}(\Omega) : u_{|K} \in S^{p_{K}}(K), \forall K \in \Pi_{h} \}$$

where $S^{p_K}(K)$ is the space of real polynomials of degree at most p_K in K.

We also set $\Sigma_h := S^p (\Pi_h)^3$.

Now, fix a face $e \subset F_h$ and define the local parameters h, p by $h := \min(h_K, h_{K'})$, $p = \max(p_K, p_{K'})$ in the case of interior faces and $h := h_K$, $p = p_K$ in the case of boundary faces [3].

2 Discretization and a priori error estimate

In order to derive a weak formulation of (1.1)–(1.2), we note that formulas (1) in [4] implies that for any *u* with $\nabla \times u \in H(\nabla \times, \Omega)$

$$c^{2}(\nabla \times (\nabla \times u), v) = c^{2}(\nabla \times u, \nabla \times v) + a(u, v)$$

where

$$a(u, v) = c^2 \langle n \times (\nabla \times u), v \rangle - c^2 \sum_{e \in F_h^I} \langle [v]_T, \{\nabla \times u\} \rangle_e.$$

Now, we introduce the penalty term via the form

$$J^{\sigma}(u,v) = \sum_{e \subset F_h^I} \langle \sigma[u]_N, [v]_N \rangle_e + \sum_{e \subset F_h} \langle \sigma[u]_T, [v]_T \rangle_e, \quad u, v \in H^1(\nabla \times, \Pi_h)$$

where $\sigma := \kappa p^2 / h$ is a stabilization parameter and κ is a constant supposed ≥ 1 . We also define

$$A(u, v) = c^{2}(\nabla \times u, \nabla \times v) + a(v, u) - a(u, v) + J(u, v),$$

$$B(u, v) = A(u, v) + J^{\sigma}(u, v)$$

and

$$J(u, v) = (\nabla \cdot u, \nabla \cdot v).$$

2.1 Properties of the bilinear form

Now, we introduce a norm associated with the bilinear form *B* and set for $u \in H^1(\nabla \times, \Pi_h)$

$$\|u\|_{h}^{2} = \|u\|^{2} + \|c(\nabla \times u)\|^{2} + \|\nabla \cdot u\|^{2} + \left\|\frac{1}{\sqrt{\sigma}}\{\nabla \times u\}\right\|_{0,F_{h}}^{2} + \|\sqrt{\sigma}[u]_{N}\|_{0,F_{h}}^{2} + \|\sqrt{\sigma}[u]_{T}\|_{0,F_{h}}^{2}.$$

We start by studying the continuity of the bilinear forms introduced above. We have:

Proposition 2.1 $\forall v, u \in H^1(\nabla \times, \Pi_h)$ there exists a constant *C* independent of *h* and *p* such that

$$|A(u,v)| \le C ||u||_h ||v||_h$$
 and $|J^{\sigma}(u,v)| \le C ||u||_h ||v||_h$.

Proof The proof is easily deduced from the definition of A, J^{σ} , $\|\cdot\|_h$ and the Cauchy-Schwarz inequality.

In order to study the coercivity of the bilinear form *B*, we start by introducing the following inequality of Poincaré-Friedrichs type valid for $u \in H^1(\Pi_h)^3$.

Lemma 2.1 Let $u \in H^1(\Pi_h)^3$. Then there exists C independent of h and p such that

$$\|u\|^{2} \leq C \bigg(\|c(\nabla \times u)\|^{2} + \|\nabla \cdot u\|^{2} + \sum_{e \in F_{h}} \|\sqrt{\sigma}[u]_{T}\|_{0,e}^{2} + \sum_{e \in F_{h}^{I}} \|\sqrt{\sigma}[u]_{N}\|_{0,e}^{2} \bigg)$$

Proof The proof follows immediately from Lemma 3.1 in [4] since $\kappa p^2 \ge 1$.

Now, the following coercivity result holds.

Proposition 2.2 There exists two constants $\alpha > 0$ and $\tilde{C} > 0$ independent of h and p such that

$$B(v,v) \ge \alpha \|v\|_h^2 + \tilde{C} J^{\sigma}(v,v), \quad \forall v \in \Sigma_h.$$

Proof Let us first recall the following inverse inequality

$$\|q\|_{0,\partial K}^{2} \leq C_{inv} \frac{p_{K}^{2}}{h_{K}} \|q\|_{0,K}^{2}, \quad \forall q \in S^{p_{K}}(K).$$
(2.1)

with a constant $C_{inv} > 0$, only depending on the shape regularity of the mesh. Now, Let α be an arbitrary real number and choose $v \in \Sigma_h$. Then

$$B(v,v) - \alpha \|v\|_{h}^{2} = (1-\alpha)(A(v,v) + J^{\sigma}(v,v)) - \alpha \int_{F_{h}} \{\nabla \times v\}^{2} / \sigma ds - \alpha \|v\|^{2}.$$

Since $\{\nabla \times v\}$ is the average of the flux at the face of two elements K_i and K_j , the corresponding integral can be split into two integrals with integrands $(\nabla \times v)_i/\sigma$ and $(\nabla \times v)_j/\sigma$, each one associated with the elements K_i or K_j respectively. Therefore, let $e \subset F_h$ and consider the integral associated with the element *K*. Using the inverse inequality (2.1), we have since $\nabla \times (\Sigma_h) \subset \Sigma_h$,

$$\int_{e} (\nabla \times v)^{2} / \sigma ds = \frac{1}{\sigma} \|\nabla \times v\|_{0,e}^{2} \le \frac{C_{inv}}{\sigma} \frac{p_{K}^{2}}{h_{K}} \|\nabla \times v\|_{0,K}^{2}$$
(2.2)

so that, selecting σ to be equal to $\kappa p^2/h$ in (2.2), we obtain

$$-\int_{e} (\nabla \times v)^{2} / \sigma ds \ge -\frac{C_{inv}}{\kappa} \|\nabla \times v\|_{0,K}^{2}.$$

In particular,

$$-\int_{F_h} \{\nabla \times v\}^2 / \sigma ds \ge -\frac{C_{inv}}{\kappa} \sum_{K \in \Pi_h} \|\nabla \times v\|_{0,K}^2$$
$$\ge -\frac{C_{inv}}{\kappa} A(v,v).$$

It then follows that

$$B(v,v) - \alpha \|v\|_h^2 \ge \left(1 - \alpha - \alpha \frac{C_{inv}}{\kappa}\right) A(v,v) + (1 - \alpha) J^{\sigma}(v,v) - \alpha \|v\|^2$$

and we can easily see there exists a positive constant C such that

$$||u||^2 \le C(A(v, v) + J^{\sigma}(v, v)).$$

Then, we obtain

$$B(v, v) - \alpha \|v\|_{h}^{2} \ge (1 - \alpha C - \alpha - \alpha C_{inv}/\kappa)A(v, v) + (1 - \alpha - \alpha C)J^{\sigma}(v, v)$$

$$\ge (1 - \alpha (C + 1 + C_{inv}/\kappa))A(v, v) + (1 - \alpha (1 + C))J^{\sigma}(v, v).$$

Thus, if α is chosen for example $\alpha = \frac{1}{C+1+C_{inv}/\kappa}$ and $\tilde{C} = 1 - \frac{1+C}{C+1+C_{inv}/\kappa} > 0$, we immediately obtain the coercivity result.

Now, the following hp-approximation result to interpolate scalar function holds (see [3]).

Proposition 2.3 Let $K \in \Pi_h$ and suppose that $u \in H^{t_K}(K)$, $t_K \ge 1$. Then there exists a sequence of polynomials $\pi_{p_K}^{h_K}(u) \in S^{p_K}(K)$, $p_K = 1, 2, ...$ satisfying, $\forall 0 \le q \le t_K$

$$\|u - \pi_{p_K}^{h_K}(u)\|_{q,K} \le C \frac{h_K^{\min(p_K+1,t_K)-q}}{p_K^{t_K-q}} \|u\|_{t_K,K}$$
 and

Springer

$$\|u - \pi_{p_K}^{h_K}(u)\|_{0,\partial K} \le C \frac{h_K^{\min(p_K+1,t_K)-\frac{1}{2}}}{p_K^{t_K-\frac{1}{2}}} \|u\|_{t_K,K}.$$

The constant C is independent of u, h_K and p_K , but depends on the shape regularity of the mesh.

In order to interpolate vector function, we define

Definition 2.1 For $u = (u_1, u_2, u_3)$ we define

$$\Pi_p^h: H^t(\nabla \times, \Pi_h) \longrightarrow \Sigma_h$$

by

$$\Pi_p^h(u) = (\pi_p^h(u_1), \pi_p^h(u_2), \pi_p^h(u_3))$$

with π_p^h is defined by $\pi_p^h(u)|_K = \pi_{p_K}^{h_K}(u|_K)$ where $\pi_{p_K}^{h_K}$ is given by Proposition 2.3.

2.2 A priori error estimate

The interior penalty finite element approximation to u is to find $U: I \longrightarrow \Sigma_h$ such that

$$(U_{tt}, v) + B(U, v) = (f, v), \quad \forall v \in \Sigma_h, \qquad U(0) = \Pi_p^h(u_0), \qquad U_t(0) = \Pi_p^h(u_1).$$
(2.3)

Upon choice of a basis for Σ_h and the data f, (2.3) determines U as the only solution to an initial value problem for a linear system of ordinary differential equations. Note that, if u is the exact solution of (1.1)–(1.2), then u satisfies the first equation in (2.3) and thus the problem is consistent.

We now analyse the proposed procedure by the method of energy estimates. In this section, *u* denotes the exact solution of (1.1)–(1.2) and *U* the discrete solution of (2.3). *C* is generic constant independent of *h* and *p* which takes different values at the different places and depends on α , \tilde{C} the coercivity constants of the form *B*, t^* and Ω .

Let $\zeta = U - u$, then ζ satisfies

$$(\zeta_{tt}, v) + B(\zeta, v) = 0, \quad \forall v \in \Sigma_h.$$

Decompose ζ as $\mu - \nu$ where $\mu = \prod_{p=1}^{h} (u) - u$ and $\nu = \prod_{p=1}^{h} (u) - U$. Thus

$$(v_{tt}, v) + B(v, v) = (\mu_{tt}, v) + B(\mu, v), \quad \forall v \in \Sigma_h.$$

Since $v_t(t) \in \Sigma_h$, we can set $v = v_t(t)$, obtaining

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \|v_t(t)\|^2 + \frac{1}{2} \frac{d}{dt} B(v(t), v(t)) &= (\mu_{tt}(t), v_t(t)) + B(\mu(t), v_t(t)) \\ &\leq \frac{1}{2} \|\mu_{tt}(t)\|^2 + \frac{1}{2} \|v_t(t)\|^2 + B(\mu(t), v_t(t)). \end{aligned}$$

Deringer

So

$$\frac{d}{dt}\|v_t(t)\|^2 + \frac{d}{dt}B(v(t),v(t)) \le \|\mu_{tt}(t)\|^2 + \|v_t(t)\|^2 + 2B(\mu(t),v_t(t))$$

Since $v_t(0) = v(0) = 0$, integration over $[0, t] \subset I$, yields

$$\|v_t(t)\|^2 + B(v(t), v(t)) \le \|\mu_{tt}\|_{L^2(L^2)}^2 + \int_0^t \|v_t(t)\|^2 dt + 2\int_0^t B(\mu(t), v_t(t)) dt.$$

The final term may be integrated by parts in time. Hence,

$$2\int_0^t B(\mu(t), \nu_t(t))dt \le 2|B(\mu(t), \nu(t))| + 2\int_0^t |B(\mu_t(t), \nu(t))|dt$$

Therefore, we can apply the coercivity and continuity of B to get

$$\begin{split} \|v_{t}(t)\|^{2} + \alpha \|v(t)\|_{h}^{2} + \tilde{C}J^{\sigma}(v(t), v(t)) \\ &\leq \|\mu_{tt}\|_{L^{2}(L^{2})}^{2} + \int_{0}^{t} \|v_{t}(t)\|^{2}dt + C\|v(t)\|_{h}\|\mu(t)\|_{h} \\ &+ 2\int_{0}^{t} |B(\mu_{t}(t), v(t))|dt \\ &\leq \|\mu_{tt}\|_{L^{2}(L^{2})}^{2} + \int_{0}^{t} \|v_{t}(t)\|^{2}dt + C\|\mu(t)\|_{h}^{2} + \frac{\alpha}{2}\|v(t)\|_{h}^{2} \\ &+ C\int_{0}^{t} \left(\|\mu_{t}(t)\|_{h}^{2} + \|v(t)\|_{h}^{2}\right)dt \\ &\leq C\left(\|\mu_{tt}\|_{L^{2}(L^{2})}^{2} + \sup_{t \in I} \|\mu(t)\|_{h}^{2} + \int_{0}^{t^{*}} \|\mu_{t}(t)\|_{h}^{2}dt\right) + \frac{\alpha}{2}\|v(t)\|_{h}^{2} \\ &+ C\int_{0}^{t} \left(\|v_{t}(t)\|^{2} + \|v(t)\|_{h}^{2}\right)dt. \end{split}$$

In particular,

$$\begin{aligned} \|v_{t}(t)\|^{2} + \|v(t)\|_{h}^{2} + J^{\sigma}(v(t), v(t)) \\ &\leq C\left(\|\mu_{tt}\|_{L^{2}(L^{2})}^{2} + \sup_{t \in I} \|\mu(t)\|_{h}^{2} + \int_{0}^{t^{*}} \|\mu_{t}(t)\|_{h}^{2} dt\right) \\ &+ C\int_{0}^{t} \left(\|v_{t}(t)\|^{2} + \|v(t)\|_{h}^{2}\right) dt. \end{aligned}$$

As this holds for all $t \in I$, Gronwall's Lemma implies that

$$\|\nu_t(t)\|^2 + \|\nu(t)\|_h^2 + J^{\sigma}(\nu(t), \nu(t))$$

$$\leq C\left(\|\mu_{tt}\|_{L^2(L^2)}^2 + \sup_{t \in I} \|\mu(t)\|_h^2 + \int_0^{t^*} \|\mu_t(t)\|_h^2 dt\right).$$

🖄 Springer

Since $\zeta = \mu - \nu$ and $J^{\sigma}(\mu, \mu) = J^{\sigma}(\mu, \nu) = 0$,

$$\begin{aligned} \|\zeta_{t}(t)\|^{2} + \|\zeta(t)\|_{h}^{2} + J^{\sigma}(\zeta(t),\zeta(t)) \\ &\leq C\left(\|\mu_{tt}\|_{L^{2}(L^{2})}^{2} + \sup_{t\in I}\|\mu(t)\|_{h}^{2} + \int_{0}^{t^{*}}\|\mu_{t}(t)\|_{h}^{2}dt + \|\mu_{t}\|_{L^{\infty}(L^{2})}^{2}\right). \end{aligned}$$

Thus, error bounds for the finite element approximation to the true solution reduces to the error bounds for the piecewise polynomial interpolant. Thus, we start by estimating $||u - \prod_{p=1}^{h} (u)||_{h}$ where $\prod_{p=1}^{h}$ is defined after Definition 2.1. By using Proposition 2.3 and the definition of $|| \cdot ||_{h}$, we obtain the following estimates

$$\|u - \Pi_{p}^{h}(u)\|_{h}^{2}n \leq C \sum_{K \in \Pi_{h}} \frac{h_{K}^{2\mu_{K}-2}}{p_{K}^{2t_{K}-3}} \|u\|_{t_{K},K}^{2} \quad \text{and}$$
$$\|u - \pi_{p_{K}}^{h_{K}}(u)\|_{q,K} \leq C \frac{h_{K}^{\mu_{K}-q}}{p_{K}^{t_{K}-q}} \|u\|_{t_{K},K}, \quad \forall 0 \leq q \leq t_{K}$$

where $\mu_K = \min(p_K + 1, t_K)$. By using the previous estimates, we can get the following result

Proposition 2.4 Let $\mu_K = \min(p_K + 1, t_K)$ and u be the exact solution of (1.1)–(1.2). Suppose that $u_{|K|} \in C^2(I, H^{t_K}(K)^3)$, $\forall K \in \Pi_h$ with $t_K \ge 2$. Let U the discrete solution of (2.3). Then, the error $\zeta = U - u$ satisfies

$$\begin{split} \|\zeta_t(t)\|^2 + \|\zeta(t)\|_h^2 + J^{\sigma}(\zeta(t),\zeta(t)) \\ &\leq C \sum_{K \in \Pi_h} \frac{h_K^{2\mu_K-2}}{p_K^{2t_K-3}} \Big(\|u_{tt}\|_{L^2(H^{t_K}(K)^3)}^2 \\ &+ \|u\|_{L^{\infty}(H^{t_K}(K)^3)}^2 + \|u_t\|_{L^2(H^{t_K}(K)^3)}^2 + \|u_t\|_{L^{\infty}(H^{t_K}(K)^3)}^2 \Big). \end{split}$$

References

- Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin method for Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)
- Grote, M., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin for Maxwell's equations: Energy norm estimates. J. Comput. Appl. Math. 204, 375–386 (2007)
- 3. Perugia, I., Schötzau, D.: The *hp*-local discontinuous Galerkin method for the low-frequency timeharmonic Maxwell's equations. Math. Comput. **243**, 1179–1214 (2003)
- 4. Zaghdani, A., Daveau, C.: Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell's equations. C.R. Acad. Sci. Paris. Ser. I **342**, 29–32 (2006)